Static Compression of Energetic Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Static Compression of Energetic Materials PDF full book. Access full book title Static Compression of Energetic Materials by Suhithi M. Peiris. Download full books in PDF and EPUB format.

Static Compression of Energetic Materials

Static Compression of Energetic Materials PDF Author: Suhithi M. Peiris
Publisher: Springer Science & Business Media
ISBN: 3540681515
Category : Science
Languages : en
Pages : 330

Book Description
Developing and testing novel energetic materials is an expanding branch of the materials sciences. Reaction, detonation or explosion of such materials invariably produce extremely high pressures and temperatures. To study the equations-of-state (EOS) of energetic materials in extreme regimes both shock and static high pressure studies are required. The present volume is an introduction and review of theoretical, experimental and numerical aspects of static compression of such materials. Chapter 1 introduces the basic experimental tool, the diamond anvil pressure cell and the observational techniques used with it such as optical microscopy, infrared spectrometry and x-ray diffraction. Chapter 2 outlines the principles of high-nitrogen energetic materials synthesis. Chapters 3 and 4, examine and compare various EOS formalisms and data fitting for crystalline and non-crystalline materials, respectively. Chapter 5 details the reaction kinetics of detonating energetic materials. Chapter 6 investigates the interplay between static and dynamic (shock) studies. Finally, Chapters 7 and 8 introduce numerical simulations: molecular dynamics of energetic materials under either hydrostatic or uni-axial stress and ab-inito treatments of defects in crystalline materials. This timely volume meets the growing demand for a state-of-the art introduction and review of the most relevant aspects of static compression of energetic materials and will be a valuable reference to researchers and scientists working in academic, industrial and governmental research laboratories.

Static Compression of Energetic Materials

Static Compression of Energetic Materials PDF Author: Suhithi M. Peiris
Publisher: Springer Science & Business Media
ISBN: 3540681515
Category : Science
Languages : en
Pages : 330

Book Description
Developing and testing novel energetic materials is an expanding branch of the materials sciences. Reaction, detonation or explosion of such materials invariably produce extremely high pressures and temperatures. To study the equations-of-state (EOS) of energetic materials in extreme regimes both shock and static high pressure studies are required. The present volume is an introduction and review of theoretical, experimental and numerical aspects of static compression of such materials. Chapter 1 introduces the basic experimental tool, the diamond anvil pressure cell and the observational techniques used with it such as optical microscopy, infrared spectrometry and x-ray diffraction. Chapter 2 outlines the principles of high-nitrogen energetic materials synthesis. Chapters 3 and 4, examine and compare various EOS formalisms and data fitting for crystalline and non-crystalline materials, respectively. Chapter 5 details the reaction kinetics of detonating energetic materials. Chapter 6 investigates the interplay between static and dynamic (shock) studies. Finally, Chapters 7 and 8 introduce numerical simulations: molecular dynamics of energetic materials under either hydrostatic or uni-axial stress and ab-inito treatments of defects in crystalline materials. This timely volume meets the growing demand for a state-of-the art introduction and review of the most relevant aspects of static compression of energetic materials and will be a valuable reference to researchers and scientists working in academic, industrial and governmental research laboratories.

Unreacted Equation of States of Typical Energetic Materials Under Static Compression: A Review *Project Supported by the National Natural Science Foundation of China (Grant Nos. 11174045 and 11404050).

Unreacted Equation of States of Typical Energetic Materials Under Static Compression: A Review *Project Supported by the National Natural Science Foundation of China (Grant Nos. 11174045 and 11404050). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Abstract: The unreacted equation of state (EOS) of energetic materials is an important thermodynamic relationship to characterize their high pressure behaviors and has practical importance. The previous experimental and theoretical works on the equation of state of several energetic materials including nitromethane, 1, 3, 5-trinitrohexahydro-1, 3, 5-triazine (RDX), 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazacyclooctane (HMX), hexanitrostilbene (HNS), hexanitrohexaazaisowurtzitane (HNIW or CL-20), pentaerythritol tetranitrate (PETN), 2, 6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105), triamino-trinitrobenzene (TATB), 1, 1-diamino-2, 2-dinitroethene (DADNE or FOX-7), and trinitrotoluene (TNT) are reviewed in this paper. The EOS determined from hydrostatic and non-hydrostatic compressions are discussed and compared. The theoretical results based on ab initio calculations are summarized and compared with the experimental data.

Energetic Materials at Extreme Conditions

Energetic Materials at Extreme Conditions PDF Author: David I.A. Millar
Publisher: Springer Science & Business Media
ISBN: 9783642231322
Category : Technology & Engineering
Languages : en
Pages : 222

Book Description
David I.A. Millar's thesis explores the effects of extreme conditions on energetic materials. His study identifies and structurally characterises new polymorphs obtained at high pressures and/or temperatures. The performance of energetic materials (pyrotechnics, propellants and explosives) can depend on a number of factors including sensitivity to detonation, detonation velocity, and chemical and thermal stability. Polymorphism and solid-state phase transitions may therefore have significant consequences for the performance and safety of energetic materials. In order to model the behaviour of these important materials effectively under operational conditions it is essential to obtain detailed structural information at a range of temperatures and pressures.

Energetic Materials

Energetic Materials PDF Author: John R. Sabin
Publisher: Academic Press
ISBN: 0128004509
Category : Science
Languages : en
Pages : 360

Book Description
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine. This volume presents a series of articles concerning current important topics in quantum chemistry. The invited articles are written by the best people in the field

Molecular Modeling of the Sensitivities of Energetic Materials

Molecular Modeling of the Sensitivities of Energetic Materials PDF Author: Didier Mathieu
Publisher: Elsevier
ISBN: 0128231106
Category : Science
Languages : en
Pages : 486

Book Description
The strict safety requirements associated with experimental studies of energetic materials warrant a computer-aided approach for the investigation and design of safe and powerful explosives or propellants. Models must therefore be developed to allow evaluation of significant properties from the structure of constitutive molecules. Much recent effort has been put into modeling sensitivities, with most work focusing on impact sensitivity, leading to a lot of experimental data in this area. Modern machine learning techniques, new physics-based models, and new reactive molecular dynamics and multiscale simulation methods have subsequently led to quantitative procedures applicable to large datasets and yielded valuable insight into the underlying initiation mechanisms. Molecular Modeling of the Sensitivities of Energetic Materials highlights these latest developments. Beginning with an introduction to experimental aspects in Part I, Parts II and III then explore relationships between sensitivity, molecular structure, and crystal structure, before going on to discuss insights from numerical simulations in Part IV. Part V then highlights applications of these approaches to the design of new materials. Providing practical guidelines for implementing predictive models and their application to the search for new compounds, Molecular Modeling of the Sensitivities of Energetic Materials is an authoritative guide to this exciting field of research. Highlights a range of approaches for computational simulation and the importance of combining these to accurately understand or estimate different parameters Provides an overview of experimental findings and knowledge in a quick, accessible format Presents guidelines to implement sensitivity models using open-source python-related software, supporting easy implementation of flexible models, and allowing fast assessment of hypotheses

Energetic Materials

Energetic Materials PDF Author:
Publisher: Elsevier
ISBN: 9780080530918
Category : Science
Languages : en
Pages : 474

Book Description
This volume provides an overview of current research and recent advances in the area of energetic materials, focusing on explosives and propellants. The contents and format reflect the fact that theory, experiment and computation are closely linked in this field. The challenge of developing energetic materials that are less sensitive to accidental stimuli continues to be of critical importance. This volume opens with discussions of some determinants of sensitivity and its correlations with various molecular and crystal properties. The next several chapters deal in considerable detail with different aspects and mechanisms of the initiation of detonation, and its quantitative description. The second half of this volume focuses upon combustion. Extensive studies model ignition and combustion, with applications to different propellants. The final chapter is an exhaustive computational treatment of the mechanism and kinetics of combustion initiation reactions of ammonium perchlorate. Overall, this volume illustrates the progress that has been made in the field of energetic materials and some of the areas of current activity. It also indicates the challenges involved in characterizing and understanding the properties and behaviour of these compounds. The work is a unique state-of-the-art treatment of the subject, written by pre-eminent researchers in the field. - Overall emphasis is on theory and computation, presented in the context of relevant experimental work - Presents a unique state-of-the-art treatment of the subject - Contributors are preeminent researchers in the field

Energetic Polymers

Energetic Polymers PDF Author: How Ghee Ang
Publisher: John Wiley & Sons
ISBN: 3527331557
Category : Science
Languages : en
Pages : 218

Book Description
This up-to-date overview provides the latest information on the performance, sensitivity, strength and processability aspects of propellants and explosive formulations, with the nature of polymer binder/plasticizer as the variable factor. Apart from applications, this monograph explores the principles behind energetic polymers, while discussing the synthetic routes and energetic characteristics of individual family of energetic polymers. Furthermore, a number of case studies illustrate the role of energetic polyerms on enhancing the performance of formulations as compared to their inert counterparts. The emphasis is on safety throughout, with practical guidance on how to safely handle and formulate energetic polymer based formulations. With the advent of a new generation of energetic polymers, this book is relevant to industry and defense organizations as well as for academic research.

Materials Under Extreme Conditions: Molecular Crystals At High Pressure

Materials Under Extreme Conditions: Molecular Crystals At High Pressure PDF Author: Vincenzo Schettino
Publisher: World Scientific
ISBN: 1783264314
Category : Science
Languages : en
Pages : 372

Book Description
High-pressure materials research has been revolutionized in the past few years due to technological breakthroughs in the diamond anvil cell (DAC), shock wave compression and molecular dynamic simulation (MD) methods. The application of high pressure, especially together with high temperature, has revealed exciting modifications of physical and chemical properties even in the simplest molecular materials.Besides the fundamental importance of these studies to understand the composition and the dynamics of heart and planets' interior, new materials possessing peculiar characteristics of hardness and composition have been synthesized at very high pressure, while unexpected chemical reactions of simple molecules to polymers and amorphous compounds have been found at milder conditions.The variety of the phenomena observed in these extreme conditions and of the materials involved provides a common ground bridging scientific communities with different cultural and experimental backgrounds. This monograph will provide a timely opportunity to report on recent progress in the field.

Shock Phenomena in Granular and Porous Materials

Shock Phenomena in Granular and Porous Materials PDF Author: Tracy J. Vogler
Publisher: Springer Nature
ISBN: 3030230023
Category : Science
Languages : en
Pages : 294

Book Description
Granular forms of common materials such as metals and ceramics, sands and soils, porous energetic materials (explosives, reactive mixtures), and foams exhibit interesting behaviors due to their heterogeneity and critical length scale, typically commensurate with the grain or pore size. Under extreme conditions of impact, granular and porous materials display highly localized phenomena such as fracture, inelastic deformation, and the closure of voids, which in turn strongly influence the bulk response. Due to the complex nature of these interactions and the short time scales involved, computational methods have proven to be powerful tools to investigate these phenomena. Thus, the coupled use of experiment, theory, and simulation is critical to advancing our understanding of shock processes in initially porous and granular materials. This is a comprehensive volume on granular and porous materials for researchers working in the area of shock and impact physics. The book is divided into three sections, where the first presents the fundamentals of shock physics as it pertains to the equation of state, compaction, and strength properties of porous materials. Building on these fundamentals, the next section examines several applications where dynamic processes involving initially porous materials are prevalent, focusing on the areas of penetration, planetary impact, and reactive munitions. The final section provides a look at emerging areas in the field, where the expansion of experimental and computational capabilities are opening the door for new opportunities in the areas of advanced light sources, molecular dynamics modeling, and additively manufactured porous structures. By intermixing experiment, theory, and simulation throughout, this book serves as an excellent, up-to-date desk reference for those in the field of shock compression science of porous and granular materials.

Overviews of Recent Research on Energetic Materials

Overviews of Recent Research on Energetic Materials PDF Author: Robert W Shaw
Publisher: World Scientific
ISBN: 9814480908
Category : Science
Languages : en
Pages : 532

Book Description
' Few books cover experimental and theoretical methods to characterize decomposition, combustion and detonation of energetic materials. This volume, by internationally known and major contributors to the field, is unique because it summarizes the most important recent work, what we know with confidence, and what main areas remain to be investigated. Most chapters comprise summaries of work spanning decades and contain expert commentary available nowhere else. Although energetic materials are its focus, this book provides a guide to modern methods for investigations of condensed and gas-phase reactions. Although these energetic reactions are complex and difficult to study, the work discussed here provides readers with a substantial understanding of the behavior of materials now in use, and a predictive capability for the development of new materials based on target properties. Contents:Connecting Molecular Properties to Decomposition, Combustion and Explosion Trends (T B Brill)Thermal Decomposition Processes of Energetic Materials in the Condensed Phase at Low and Moderate Temperatures (R Behrens)Study of Energetic Material Combustion Chemistry by Probing Mass Spectrometry and Modeling of Flames (O P Korobeinichev)Optical Spectroscopic Measurements of Energetic Material Flame Structure (T Parr & D Hanson-Parr)Transient Gas-Phase Intermediates in the Decomposition of Energetic Materials (P J Dagdigian)Role of Excited Electronic States in the Decomposition of Energetic Materials (E R Bernstein)Gas-Phase Kinetics for Propellant Combustion Modeling: Requirements and Experiments (W R Anderson & A Fontijn)Gas-Phase Decomposition of Energetic Molecules (D L Thompson)Modeling the Reactions of Energetic Materials in the Condensed Phase (L E Fried et al.)Multi-Phonon Up-Pumping in Energetic Materials (D D Dlott)Applications of Theoretical Chemistry in Assessing Energetic Materials for Performance or Sensitivity (B M Rice)Combustion and Ignition of Nitramine Propellants: Aspects of Modeling, Simulation, and Analysis (E S Kim & V Yang)Burning-Rate Models and Their Successors, A Personal Perspective (M S Miller)Ideas to Expand Thinking About New Energetic Materials (J Bottaro) Readership: Researchers studying fast chemical reactions and materials behavior under extreme conditions. Experts and beginners in energetic decomposition, combustion and detonation research. Keywords:Energetic Materials;Combustion;Thermal Decomposition;Combustion Model;Materials Design;Flames;Explosive;Propellant;Computational Chemistry;DetonationKey Features:Summarizes the known knowns (the most important recent work) and lists the known unknowns (what remains to be investigated)Provides expert commentary on the complex behavior of materialsReviews:“This book nicely covers the application of many experimental and theoretical tools to study the difficult problem of ignition and combustion of many traditional energetic materials. It could be a valuable resource to the researchers in the field.”Journal of the American Chemical Society '